Lasting mantle scars lead to perennial plate tectonics
نویسندگان
چکیده
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
منابع مشابه
The Relation Between Mantle Dynamics and Plate Tectonics: A Primer
We present an overview of the relation between mantle dynamics and plate tectonics, adopting the perspective that the plates are the surface manifestation, i.e., the top thermal boundary layer, of mantle convection. We review how simple convection pertains to plate formation, regarding the aspect ratio of convection cells; the forces that drive convection; and how internal heating and temperatu...
متن کاملThermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth
[1] The net influx of water into the deep mantle by plate tectonics has been poorly constrained because it is difficult to quantify how efficiently subducting slabs are devolatilized on a global scale. The significance of deep water cycle in the Earth history is similarly ambiguous because it depends critically on when plate tectonics started and how it evolved through time. Here I show that, u...
متن کاملPlate tectonics and convection in the Earth's mantle: toward a numerical simulation
Plate tectonics is a kinematic description of Earth that treats the outer shell of its mantle as a number of plates or rigid spherical caps that move with respect to each other (see the “Plate tectonics” sidebar). The mantle is the outer, solid 3,000-km-thick shell that overlies Earth’s fluid outer core. An enormous amount of geological and geophysical data has gone into determining the motion ...
متن کاملTectonics of early Earth: Some geodynamic considerations
Today, plate tectonics is the dominant tectonic style on Earth, but in a hotter Earth tectonics may have looked different due to the presence of more melting and associated compositional buoyancy as well as the presence of a weaker mantle and lithosphere. Here we review the geodynamic constraints on plate tectonics and proposed alternatives throughout Earth’s history. Observations suggest a 100...
متن کاملPlate tectonics and planetary habitability: current status and future challenges.
Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: co...
متن کامل